147 research outputs found

    Telemonitoring systems for respiratory patients: technological aspects.

    Get PDF
    Abstract This review introduces the reader to the available technologies in the field of telemonitoring, with focus on respiratory patients. In the materials and methods section, a general structure of telemonitoring systems for respiratory patients is presented and the sensors of interest are illustrated, i.e., respiratory monitors (wearable and non-wearable), activity trackers, pulse oximeters, environmental monitors and other sensors of physiological variables. Afterwards, the most common communication protocols are briefly introduced. In the results section, selected clinical studies that prove the significance of the presented parameters in chronic respiratory diseases are presented. This is followed by a discussion on the main current issues in telemedicine, in particular legal aspects, data privacy and benefits both in economic and health terms

    Layer-specific programs of development in neocortical projection neurons

    Get PDF
    Journal ArticleHow are long-range axonal projections from the cerebral cortex orchestrated during development? By using both passively and actively transported axonal tracers in fetal and postnatal ferrets, we have analyzed the development of projections from the cortex to a number of thalamic nuclei. We report that the projections of a cortical area to its corresponding thalamic nuclei follow highly cell-specific programs of development. Axons from cells in the deepest layers of the cerebral cortex (layer 6 and superficial subplate neurons) appear to grow very slowly and be delayed for several weeks in the cerebral white matter, reaching the thalamus over a protracted period. Neurons of layer 5, on the other hand, develop their projections much faster; despite being born after the neurons of deeper layers, layer 5 neurons are the first to extend their axons out of the cortical hemisphere and innervate the thalamus. Layer 5 projections are massive in the first postnatal weeks but may become partly eliminated later in development, being overtaken in number by layer 6 cells that constitute the major corticothalamic projection by adulthood. Layer 5 projections are area-specific from the outset and arise as collateral branches of axons directed to the brainstem and spinal cord. Our findings show that the early development of corticofugal connections is determined not by the sequence of cortical neurogenesis but by developmental programs specific for each type of projection neuron. In addition, they demonstrate that in most thalamic nuclei, layer 5 neurons (and not subplate or layer 6 neurons) establish the first descending projections from the cerebral cortex

    Experimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific patterns in a novel target

    Get PDF
    Journal ArticleWe have examined the relative role of afferents and targets in pattern formation using a novel preparation, in which retinal projections in ferrets are induced to innervate the medial geniculate nucleus (MGN). We find that retinal projections to the MGN are arranged in scattered clusters. Clusters arising from the ipsilateral eye are frequently adjacent to, but spatially segregated from, clusters arising from the contralateral eye. Both clustering and eye-specific segregation in the MGN arise as a refinement of initially diffuse and overlapped projections. The shape, size, and orientation of retinal terminal clusters in the MGN closely match those of relay cell dendrites arrayed within fibrodendritic laminae in the MGN. We conclude that specific aspects of a projection system are regulated by afferents and others by targets. Clustering of retinal projections within the MGN and eye-specific segregation involve progressive remodeling of retinal axon arbors, over a time period that closely parallels pattern formation by retinal afferents within their normal target, the lateral geniculate nucleus (LGN). Thus, afferent-driven mechanisms are implicated in these events. However, the termination zones are aligned within the normal cellular organization of the MGN, which does not differentiate into eye-specific cell layers similar to the LGN. Thus, target-driven mechanisms are implicated in lamina formation and cellular differentiation

    Multiple components of surround modulation in primary visual cortex: Multiple neural circuits with multiple functions?

    Get PDF
    pre-printThe responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene

    Role for nitric oxide in the development of the ferret retinogeniculate projection

    Get PDF
    Journal ArticleThe ferret retinogeniculate projection segregates into eye-specific layers during the first postnatal week and into ON/OFF sublaminae, which receive inputs from either on-center or off-center retinal ganglion cells, during the third and fourth postnatal weeks. The restriction of retinogeniculate axon arbors into eye-specific layers appears to depend on action potential activity () but does not require activation of NMDA receptors (). The formation of ON/OFF sublaminae is also activity-dependent and is disrupted by in vivo blockade of NMDA receptors (). To investigate a possible mechanism whereby blockade of postsynaptic NMDA receptors in the lateral geniculate nucleus (LGN) results in changes in the size and position of presynaptic axon arbors, we tested the role of the diffusible messenger nitric oxide (NO) in the development of the retinogeniculate pathway. We found previously that NO synthase (NOS) is transiently expressed in LGN cells during the refinement of retinogeniculate projections (). In this study, treatment with NG-nitro-L-arginine (L-NoArg), an arginine analog that inhibits NOS, during the third and fourth postnatal weeks resulted in an overall pattern of sublamination that was significantly reduced compared with normal and control animals. Single retinogeniculate axon arbors were located in the middle of eye-specific layers rather than toward the inner or outer half as in normal or control animals. The effect of NOS inhibition was not a consequence of the hypertensive effect of L-NoArg. In contrast to the effect of L-NoArg on the formation of ON/OFF sublaminae, treatment with L-NoArg during the first postnatal week did not disrupt the formation of eye-specific layers. Biochemical assays indicated significant inhibition of NOS during both treatment periods. These data suggest that NO acts together with NMDA receptors in activity-dependent refinement of connections during a specific phase of retinogeniculate development

    Circuits for local and global signal integration in primary visual cortex

    Get PDF
    Journal ArticleContrast-dependent changes in spatial summation and contextual modulation of primary visual cortex (V1) neuron responses to stimulation of their receptive field reveal long-distance integration of visual signals within V1, well beyond the classical receptive field (cRF) of single neurons. To identify the cortical circuits mediating these long-distance computations, we have used a combination of anatomical and physiological recording methods to determine the spatial scale and retinotopic logic of intra-areal V1 horizontal connections and inter-areal feedback connections to V1. We have then compared the spatial scales of these connectional systems to the spatial dimensions of the cRF, spatial summation field (SF), and modulatory surround field of macaque V1 neurons. We find that monosynaptic horizontal connections within area V1 are of an appropriate spatial scale to mediate interactions within the SF of V1 neurons and to underlie contrast-dependent changes in SF size. Contrary to common beliefs, these connections cannot fully account for the dimensions of the surround field. The spatial scale of feedback circuits from extrastriate cortex to V1 is, instead, commensurate with the full spatial range of center-surround interactions. Thus these connections could represent an anatomical substrate for contextual modulation and global-to-local integration of visual signals. Feedback projections connect corresponding and equal-sized regions of the visual field in striate and extrastriate cortices and cover anisotropic parts of visual space, unlike V1 horizontal connections that are isotropic in the macaque. V1 isotropic connectivity demonstrates that anisotropic horizontal connections are not necessary to generate orientation selectivity. Anisotropic feedback connections may play a role in contour completion

    Segregation and overlap of callosal and association neurons in frontal and parietal cortices of primates: a spectral and coherency analysis.

    Get PDF
    Journal ArticleThe spatial relations between selected classes of association and callosal neurons were studied in the frontal and parietal lobes of the macaque monkey using retrogradely transported fluorescent dyes. Fast blue and nuclear yellow were injected in the left frontal (areas 4 and 6) and right posterior parietal (area 5) cortices, respectively. These injections led to the retrograde labeling, in the right frontal cortex, of callosal neurons projecting homotopically and association neurons projecting to ipsilateral area 5; in the left superior parietal lobule, of callosal neurons projecting to contralateral area 5 and association neurons projecting to the ipsilateral frontal lobe. In both frontal and parietal cortices, callosal and association neurons were located in layers III and V-VI; a few neurons were also found in layer II. The contribution of layers V-VI to the callosum was significantly higher in areas 4 and 6 than in area 5. Only a small number of neurons (less than 1%) were double labeled. Spectral analyses were used to characterize the spatial periodicities of the distributions of callosal and association neurons. In areas 4, 6, and 5, both association and callosal spectra were dominated by a strong elevation in the range of low spatial frequencies, corresponding to periodicities in cell density with a peak-to-peak distance of about 8 mm. This indicated an arrangement of these corticocortical cells in the form of bands. The latter displayed various shapes and orientations and were composed of more discrete assemblies of cell clusters of about 400-1000 microns width. Their presence was revealed in the power spectra by a small elevation in the range of high spatial frequencies. The coherency analysis assessed the degree of linear relationships for each spatial frequency, and therefore the degree of similarity, between callosal and association cell distributions, together with their phase relations. Little coherency was found in areas 4 and 6 between bands of callosal and association neurons, which suggests that the 2 cell populations are differently and independently distributed in the tangential domain, with no simple phase relations. The overall mean coherency was higher in area 5 than in the frontal cortex: callosal and association bands were more similar in shape, with more extensive zones of overlap. These data indicate that callosal and association neurons share common principles of spatial organization despite the great regional variability of their interrelations in the tangential cortical domain

    Experimental retinal projections to the Ferret auditory thalamus : morphology, development and effects on auditory cortical organization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 1997.Includes bibliographical references.by Alessandra Angelucci.Ph.D

    Controversial issues in visual cortex mapping: Extrastriate cortex between areas V2 and MT in human and nonhuman primates

    Get PDF
    The visual cerebral cortex of primates includes a mosaic of anatomically and functionally distinct areas processing visual information. While there is universal agreement about the location, boundaries, and topographic organization of the areas at the earliest stages of visual processing in many primate species, i.e., the primary (V1), secondary (V2), and middle temporal (MT) visual areas, there is still ongoing debate regarding the exact parcellation of cortex located between areas V2 and MT. Several parcellation schemes have been proposed for extrastriate cortex even within the same species. With the exception of V1, V2, and MT, these schemes differ in areal borders, areal location, neighboring relations, number of areas, and nomenclature. As a result, most anatomical and physiological studies of these areas have been carried out following one or another scheme, in the absence of any general agreement. This situation is inevitably hampering our understanding of the function and evolution of these visual areas. The goal of this special issue is to provide a critical review and evaluation of the literature on the most controversial issues regarding the parcellation of extrastriate cortex, to identify the main reasons for the controversy, and to suggest critical future experimental approaches that could lead to a consensus about the anatomical and functional identity of these areas

    Anatomy and Physiology of Macaque Visual Cortical Areas V1, V2, and V5/MT : Bases for Biologically Realistic Models

    Get PDF
    The cerebral cortex of primates encompasses multiple anatomically and physiologically distinct areas processing visual information. Areas V1, V2, and VS/MT are conserved across mammals and are central for visual behavior. To facilitate the generation of biologically accurate computational models of primate early visual processing, here we provide an overview of over 350 published studies of these three areas in the genus Macaca, whose visual system provides the closest model for human vision. The literature reports 14 anatomical connection types from the lateral geniculate nucleus of the thalamus to V1 having distinct layers of origin or termination, and 194 connection types between V1, V2, and VS, forming multiple parallel and interacting visual processing streams. Moreover, within V1, there are reports of 286 and 120 types of intrinsic excitatory and inhibitory connections, respectively. Physiologically, tuning of neuronal responses to 11 types of visual stimulus parameters has been consistently reported. Overall, the optimal spatial frequency (SF) of constituent neurons decreases with cortical hierarchy. Moreover, VS neurons are distinct from neurons in other areas for their higher direction selectivity, higher contrast sensitivity, higher temporal frequency tuning, and wider SF bandwidth. We also discuss currently unavailable data that could be useful for biologically accurate models.Peer reviewe
    • …
    corecore